某企业打算处理一批产品,这些产品每箱100件,以箱为单位销售.已知这批产品中每箱出现的废品率只有或者两种可能,两种可能对应的概率均为0.5.假设该产品正品每件市场价格为100元,废品不值钱.现处理价格为每箱8400元,遇到废品不予更换.以一箱产品中正品的价格期望值作为决策依据.
(1)在不开箱检验的情况下,判断是否可以购买;
(2)现允许开箱,有放回地随机从一箱中抽取2件产品进行检验.
①若此箱出现的废品率为,记抽到的废品数为,求的分布列和数学期望;
②若已发现在抽取检验的2件产品中,其中恰有一件是废品,判断是否可以购买.
已知动直线:与轴交于点,过点作直线,交轴于点,点满足,的轨迹为.
(1)求的方程;
(2)已知点,点,过作斜率为的直线交于,两点,延长,分别交于,两点,记直线的斜率为,求证:为定值.
梯形中,,,,,过点作,交于(如图1).现沿将折起,使得,得四棱锥(如图2).
(1)求证:平面平面;
(2)若为的中点,求二面角的余弦值.
在中,角,,的对边分别为,,.已知.
(1)求证:;
(2)若,,求的面积.
若存在正实数,使得成立,则的取值范围是_____.
已知数列的前项和为,数列满足,,则数列的通项公式_____.