椭圆的长轴长为_____________.
已知函数.
(1)求不等式的解集;
(2)设函数的最小值为m,当a,b,,且时,求的最大值.
在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程与曲线的的直角坐标方程;
(2)若与交于两点,点的极坐标为,求的值.
设函数,
(1)当时,求函数的单调区间;
(2)若在内有极值点,当,,求证:.
已知椭圆:的离心率为,焦距为.
(1)求的方程;
(2)若斜率为的直线与椭圆交于,两点(点,均在第一象限),为坐标原点,证明:直线,,的斜率依次成等比数列.
在四棱柱中,底面为平行四边形,平面.,
(1)证明:平面平面;
(2)若直线与底面所成角为, ,,分别为,,的中点,求三棱锥的体积.