已知函数有两个零点.
(1)求的取值范围;
(2)记的极值点为,求证:.
在平面直角坐标系中,圆,点,过的直线与圆交于点,过做直线平行交于点.
(1)求点的轨迹的方程;
(2)过的直线与交于、两点,若线段的中点为,且,求四边形面积的最大值.
根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布.
(1)随机购买10只该商家的海产品,求至少买到一只质量小于克该海产品的概率.
(2)2020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入(千元)与年收益增量(千元)()的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线的附近,且,,,,,, ,其中, =.根据所给的统计量,求关于的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.
附:若随机变量,则,;
对于一组数据,,,,其回归线的斜率和截距的最小二乘估计分别为,.
在三棱柱中,已知,,为的中点,平面
(1)证明四边形为矩形;
(2)求直线与平面所成角的余弦值.
已知函数.
(1)求的单调递减区间;
(2)在锐角中,,,分别为角,,的对边,且满足,求的取值范围.
已知正方体的棱长为3. 点是棱的中点,点是棱上靠近点的三等分点. 动点在正方形(包含边界)内运动, 且面,则动点所形成的轨迹的长度为_________