满分5 > 高中数学试题 >

如图,四边形ABCD与BDEF均为菱形,∠DAB=∠DBF=60°,且FA=FC...

如图,四边形ABCD与BDEF均为菱形,∠DAB=∠DBF=60°,且FA=FC.

(Ⅰ)求证:AC⊥平面BDEF;

(Ⅱ)求证:FC∥平面EAD;

(Ⅲ)求二面角A﹣FC﹣B的余弦值.

 

(1)见解析(2)见解析(3) 【解析】 试题(Ⅰ)设与相交于点,连接,因为四边形为菱形,所以,且为中点,由,知,由此能够证明平面;(Ⅱ)因为四边形与均为菱形,所以,平面平面,由此能够证明平面;(Ⅲ)因为四边形为菱形,且,所以为等边三角形,因为为中点,所以,故平面,由两两垂直,建立空间直角坐标系,设,因为四边形为菱形,,则,所以,,求得平面的法向量为,平面的法向量为,由此能求出二面角的余弦值. 试题解析:(Ⅰ)证明:设AC与BD相交于点O, 连接FO.因为四边形ABCD为菱形,所以AC⊥BD,且O为AC中点. 又 FA=FC,所以 AC⊥FO. 因为 FO∩BD=O, 所以 AC⊥平面BDEF. (Ⅱ)证明:因为四边形ABCD与BDEF均为菱形, 所以AD∥BC,DE∥BF, 所以 平面FBC∥平面EAD. 又FC⊂平面FBC,所以FC∥平面EAD. (Ⅲ)【解析】 因为四边形BDEF为菱形,且∠DBF=60°, 所以△DBF为等边三角形. 因为O为BD中点,所以FO⊥BD,故FO⊥平面ABCD. 由OA,OB,OF两两垂直,建立如图所示的空间直角坐标系O﹣xyz. …(9分) 设AB=2.因为四边形ABCD为菱形,∠DAB=60°, 则BD=2,所以OB=1,.所以 . 所以 ,. 设平面BFC的法向量为=(x,y,z), 则有, 取x=1,得. ∵平面AFC的法向量为=(0,1,0). 由二面角A﹣FC﹣B是锐角,得|cos<,>|==. 所以二面角A﹣FC﹣B的余弦值为.  
复制答案
考点分析:
相关试题推荐

某地区人民法院每年要审理大量案件,去年审理的四类案件情况如表所示:

编号

项目

收案(件)

结案(件)

 

判决(件)

1

刑事案件

2400

2400

2400

2

婚姻家庭、继承纠纷案件

3000

2900

1200

3

权属、侵权纠纷案件

4100

4000

2000

4

合同纠纷案件

14000

13000

n

 

其中结案包括:法庭调解案件、撤诉案件、判决案件等.根据以上数据,回答下列问题.

(Ⅰ)在编号为123的收案案件中随机取1件,求该件是结案案件的概率;

(Ⅱ)在编号为2的结案案件中随机取1件,求该件是判决案件的概率;

(Ⅲ)在编号为123的三类案件中,判决案件数的平均数为,方差为S12,如果表中n,表中全部(4类)案件的判决案件数的方差为S22,试判断S12S22的大小关系,并写出你的结论(结论不要求证明).

 

查看答案

已知函数(其中),其部分图像如图所示.

1)求函数的解析式;

2)已知横坐标分别为的三点都在函数的图像上,求的值.

 

查看答案

在平面直角坐标系xOy中,对于⊙Ox2+y21来说,P是坐标系内任意一点,点P到⊙O的距离SP的定义如下:若PO重合,SPr;若P不与O重合,射线OP与⊙O的交点为ASPAP的长度(如图).

1)直线2x+2y+10在圆内部分的点到⊙O的最长距离为_____

2)若线段MN上存在点T,使得:

①点T在⊙O内;

P∈线段MN,都有STSP成立.则线段MN的最大长度为_____

 

查看答案

已知非零向量满足||1的夹角为30°,则||的最小值是_____

 

查看答案

经过点且与双曲线有公共渐近线的双曲线方程为_________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.