在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为.
(1)求曲线C的普通方程;
(2)已知,直线与曲线C交于P,Q两点,求的最大值.
已知函数,.
(1)设函数,若是函数的唯一极值点,求实数的取值范围;
(2)若函数有两个零点,,证明:.
已知抛物线,其焦点为,直线过点与交于、两点,当的斜率为时,.
(1)求的值;
(2)在轴上是否存在一点满足(点为坐标原点)?若存在,求点的坐标;若不存在,请说明理由.
如图,已知四棱锥中,平面,为等边三角形,,是的中点.
(1)求证:平面;
(2)若,求点到平面的距离.
新高考最大的特点就是取消文理科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全理(选择物理、化学、生物)的选择是否与性别有关,觉得从某学校高一年级的名学生中随机抽取男生,女生各人进行模拟选科.经统计,选择全理的人数比不选全理的人数多人.
(1)请完成下面的列联表;
(2)估计有多大把握认为选择全理与性别有关,并说明理由;
(3)现从这名学生中已经选取了男生名,女生名进行座谈,从中抽取名代表作问卷调查,求至少抽到一名女生的概率.
附:,其中.
在正项等比数列中,已知.
(1)求数列的通项公式;
(2)令,求数列的前100项的和.