已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(∁UA)∪(∁UB)等于( )
A. {1,6} B. {4,5} C. {2,3,4,5,7} D. {1,2,3,6,7}
定义:给定整数i,如果非空集合满足如下3个条件:
①;②;③,若,则.
则称集合A为“减i集”
(1)是否为“减0集”?是否为“减1集”?
(2)证明:不存在“减2集”;
(3)是否存在“减1集”?如果存在,求出所有“减1集”;如果不存在,说明理由.
已知椭圆C:()的左、右顶点分别为A,B,左焦点为F,O为原点,点P为椭圆C上不同于A、B的任一点,若直线PA与PB的斜率之积为,且椭圆C经过点.
(1)求椭圆C的方程;
(2)若P点不在坐标轴上,直线PA,PB交y轴于M,N两点,若直线OT与过点M,N的圆G相切.切点为T,问切线长是否为定值,若是,求出定值,若不是,请说明理由.
已知函数.
(Ⅰ)当时,求函数在上的单调区间;
(Ⅱ)求证:当时,函数既有极大值又有极小值.
在四棱锥中,平面平面PCD,底面ABCD为梯形,,,M为PD的中点,过A,B,M的平面与PC交于N.,,,.
(1)求证:N为PC中点;
(2)求证:平面PCD;
(3)T为PB中点,求二面角的大小.
某校高三1班共有48人,在“六选三”时,该班共有三个课程组合:理化生、理化历、史地政其中,选择理化生的共有24人,选择理化历的共有16人,其余人选择了史地政,现采用分层抽样的方法从中抽出6人,调查他们每天完成作业的时间.
(1)应从这三个组合中分别抽取多少人?
(2)若抽出的6人中有4人每天完成六科(含语数英)作业所需时间在3小时以上,2人在3小时以内.现从这6人中随机抽取3人进行座谈.
用X表示抽取的3人中每天完成作业所需时间在3小时以上的人数,求随机变量X的分布列和数学期望.