满分5 > 高中数学试题 >

如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在上. (1)若圆心也...

如图,在平面直角坐标系中,点,直线,设圆的半径为1 圆心在.

1)若圆心也在直线上,过点作圆的切线,求切线方程;

2)若圆上存在点,使,求圆心的横坐标的取值范围.

 

(1)或;(2). 【解析】 (1)两直线方程联立可解得圆心坐标,又知圆的半径为,可得圆的方程,根据点到直线距离公式,列方程可求得直线斜率,进而得切线方程;(2)根据圆的圆心在直线:上可设圆的方程为,由,可得的轨迹方程为,若圆上存在点,使,只需两圆有公共点即可. (1)由得圆心, ∵圆的半径为1, ∴圆的方程为:, 显然切线的斜率一定存在,设所求圆的切线方程为,即. ∴, ∴,∴或. ∴所求圆的切线方程为或. (2)∵圆的圆心在直线:上,所以,设圆心为, 则圆的方程为. 又∵, ∴设为,则,整理得,设为圆. 所以点应该既在圆上又在圆上,即圆和圆有交点, ∴, 由,得, 由,得. 综上所述,的取值范围为.
复制答案
考点分析:
相关试题推荐

如图,在四棱锥PABCD中,底面ABCD是菱形,∠BAD60°PAPDAD2,点M在线段PC上,且PM2MCNAD的中点.

1)求证:AD⊥平面PNB

2)若平面PAD⊥平面ABCD,求三棱锥PNBM的体积.

 

查看答案

某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试.现从这些学生的成绩中随机抽取了50名学生的成绩,按照分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).

1)求频率分布直方图中x的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);

2)用样本估计总体,若该校共有2000名学生,试估计该校这次测试成绩不低于70分的人数;

3)若利用分层抽样的方法从样本中成绩不低于70分的学生中抽取6人,再从这6人中随机抽取3人,试求成绩在的学生至少有1人被抽到的概率.

 

查看答案

已知命题:“,使等式成立”是真命题.

1)求实数的取值集合

2)设不等式的解集为,若的必要条件,求的取值范围.

 

查看答案

已知公差的等差数列满足,且成等比数列.

1)求的通项公式;

2)若的前项和,求数列的前n项和.

 

查看答案

给出下面四个命题:

①“直线平面内所有直线”的充要条件是“平面”;

②“直线直线”的充要条件是“平行于所在的平面”;

③“直线为异面直线”的充分不必要条件是“直线不相交”;

④“平面平面”的必要不充分条件是“内存在不共线三点到的距离相等”.

其中正确命题的序号是____________________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.