某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:
日期 | 11月1日 | 11月2日 | 11月3日 | 11月4日 | 11月5日 |
温差(℃) | 8 | 11 | 12 | 13 | 10 |
发芽数(颗) | 16 | 25 | 26 | 30 | 23 |
设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(参考:,)
(1)若选取的是11月1日与11月5日的两组数据进行检验,请根据11月2日至11月4日的三组数据,求出关于的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
如图,四棱锥的底面为矩形,是四棱锥的高,与平面PAD所成角为45º,是的中点,E是BC上的动点.
(1)证明:PE⊥AF;
(2)若BC=2AB,PE与AB所成角的余弦值为,求二面角D-PE-B的余弦值.
一所学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采用分层抽样的方法,从某班选出10人参加活动.在活动前对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图.
(1)根据这10名同学的测试成绩,估计该班男、女生国学素养测试的平均成绩;
(2)若成绩大于等于75分为优良,从这10名同学中随机选取2名男生,2名女生,求这4名同学的国学素养测试成绩均为优良的概率.
如图,在直三棱柱中,,,,,为的中点.
(1)证明:平面;
(2)求直线与平面所成角的正弦值.
为节约生活用水,某市计划试行居民生活用水定额管理,为了较为合理地确定出居民月均用水量标准,通过抽样获得了100位居民某年的月均用水量(单位:),并制作了频率分布直方图.
(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整,并说明理由;
(2)从频率分布直方图中估计该100位居民月均用水量的众数,中位数.
数学中有许多形状优美、寓意美好的曲线,曲线就是其中之一(如图),给出下列三个结论:
①曲线恰好经过4个整点(即横、纵坐标均为整数的点);
②曲线上任意一点到原点的距离都不超过.
③曲线所围成的“花形”区域的面积小于4.
其中,所有正确结论的序号是_______.