已知集合,,则( )
A. B.
C. D.
椭圆的中心在原点,焦点在轴上,离心率,它的一个顶点恰好是抛物线的焦点.
(1)求椭圆的标准方程;
(2)过坐标原点的直线交椭圆于两点,在第一象限,轴,垂足为,连接延长交椭圆于点.
①求证:;
②求面积最大值.
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:
日期 | 11月1日 | 11月2日 | 11月3日 | 11月4日 | 11月5日 |
温差(℃) | 8 | 11 | 12 | 13 | 10 |
发芽数(颗) | 16 | 25 | 26 | 30 | 23 |
设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(参考:,)
(1)若选取的是11月1日与11月5日的两组数据进行检验,请根据11月2日至11月4日的三组数据,求出关于的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
如图,四棱锥的底面为矩形,是四棱锥的高,与平面PAD所成角为45º,是的中点,E是BC上的动点.
(1)证明:PE⊥AF;
(2)若BC=2AB,PE与AB所成角的余弦值为,求二面角D-PE-B的余弦值.
一所学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采用分层抽样的方法,从某班选出10人参加活动.在活动前对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图.
(1)根据这10名同学的测试成绩,估计该班男、女生国学素养测试的平均成绩;
(2)若成绩大于等于75分为优良,从这10名同学中随机选取2名男生,2名女生,求这4名同学的国学素养测试成绩均为优良的概率.
如图,在直三棱柱中,,,,,为的中点.
(1)证明:平面;
(2)求直线与平面所成角的正弦值.