棋盘上标有第0、1、2...100站,棋子开始位于第0站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设棋子位于第n站的概率为,设.则下列结论正确的有( )
①;;
②数列()是公比为的等比数列;
③;
④.
A.1个 B.2个 C.3个 D.4个
椭圆与双曲线共焦点、,它们的交点对两公共焦点、的张角为,椭圆与双曲线的离心率分别为、,则( )
A. B.
C. D.
有两个等差数列2,6,10,…,190和2,8,14,…,200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的项数为( )
A.15 B.16 C.17 D.18
古希腊几何学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数k(,)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点A、B间的距离为2,动点P满足,则的最大值为( )
A. B. C. D.
如图,空间四边形OABC中,,,,且,,则等于( )
A. B.
C. D.
若,则方程所表示的曲线一定不会是( )
A.直线
B.焦点在x轴上的椭圆
C.焦点在y轴上的椭圆
D.双曲线