在中,两直角边AB,AC的长分别为m,n(其中),以BC的中点O为圆心,作半径为r()的圆O.
(1)若圆O与的三边共有4个交点,求r的取值范围;
(2)设圆O与边BC交于P,Q两点;当r变化时,甲乙两位同学均证明出为定值甲同学的方法为:连接AP,AQ,AO,利用两个小三角形中的余弦定理来推导;乙同学的方法为;以O为原点建立合适的直角坐标系,利用坐标法来计算.请在甲乙两位同学的方法中选择一种来证明该结论,定值用含m、n的式子表示.(若用两种方法,按第一种方法给分)
如图,在四棱锥中,底面ABCD,底面ABCD为梯形,,,且.
(1)在PD上是否存在一点F,使得平面PAB,若存在,找出F的位置,若不存在,请说明理由;
(2)求二面角的大小.
某学习软件以数学知识为题目设置了一项闯关游戏,共有15关,每过一关可以得到一定的积分,现有三种积分方案供闯关者选择.方案一:每闯过一关均可获得40积分;方案二:闯过第一关可获得5积分,后面每关的积分都比前一关多5;方案三:闯过第一关可获得0.5积分,后面每关的积分都是前一关积分的2倍.若某关闯关失败则停止游戏,最终积分为闯过的各关的积分之和,设三种方案闯过n(且)关后的积分之和分别为,要求闯关者在开始前要选择积分方案.
(1)求出的表达式;
(2)为获得尽量多的积分,如果你是一个闯关者,试分析这几种积分方案该如何选择?小明通过试验后觉得自己至少能闯过12关,则他应该选择第几种积分方案?
已知的顶点,边上的中线所在直线方程为, 边上 的高,所在直线方程为.
(1)求顶点 的坐标;
(2)求直线的方程.
已知数列的前n项和为,且.
(1)求数列的通项.
(2)设,求数列的前n项和.
若椭圆:()与椭圆:()的焦距相等,给出如下四个结论:
①和一定有交点;
②若,则;
③若,则;
④设与在第一象限内相交于点,若,则.
其中,所有正确结论的序号是______.