已知圆C:.
(1)求圆的圆心C的坐标和半径长;
(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于两点,求证:为定值;
(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使的面积最大.
如图,在四棱锥P-ABCD中,底面ABCD是正方形,底面,且PA=AB.
(1)求证:BD平面PAC;
(2)求异面直线BC与PD所成的角.
已知函数
(1)求的值;
(2)求的最大值及取得最大值时对应的的值.
某班共有学生45人,其中女生18人,现用分层抽样的方法,从男、女学生中各抽取若干学生进行演讲比赛,有关数据见下表(单位:人)
性别 | 学生人数 | 抽取人数 |
女生 | 18 | |
男生 | 3 |
(1)求和;
(2)若从抽取的学生中再选2人做专题演讲,求这2人都是男生的概率.
已知等差数列的前项和为,,.
(1)求数列的通项公式;
(2)当为何值时,取得最大值.
已知定义在上的奇函数满足,则的值为_______.