设集合,,则( )
A. B. C. D.
已知是定义在上的奇函数,且,若,当时,有成立.
(1)判断在上的单调性,并证明你的结论;
(2)若对所有的,恒成立,求实数的取值范围.
如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为.
(1)求侧面与底面所成的二面角的大小;
(2)若是的中点,求异面直线与所成角的正切值;
(3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.
某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.
(1)写出第一次服药后,y与t之间的函数关系式y=f(t);
(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?
已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=.
(1)求直线CD的方程;
(2)求圆P的方程.
已知一个几何体的三视图如图所示.
(1)求此几何体的表面积;
(2)在如图的正视图中,如果点为所在线段中点,点为顶点,求在几何体侧面上从点到点的最短路径的长.