满分5 > 高中数学试题 >

某中学根据学生的兴趣爱好,分别创建了“书法”、“诗词”、“理学”三个社团,据资料...

某中学根据学生的兴趣爱好,分别创建了“书法”、“诗词”、“理学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2015年某新生入学,假设他通过考核选拔进入该校的“书法”、“诗词”、“理学”三个社团的概率依次为,己知三个社团他都能进入的概率为,至少进入一个社团的概率为,且.

(1)求的值;

(2)该校根据三个社团活动安排情况,对进入“书法”社的同学增加校本选修学分1分,对进入“诗词”社的同学增加校本选修学分2分,对进入“理学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数不低于4分的概率.

 

(1) ; (2). 【解析】 (1)根据题意,假设该同学通过考核选拔进入该校的“书法”、“诗词”、“理学”三个社团的概率依次为、、,已知三个社团都能进入的概率为,至少进入一个社团的概率为,且,利用相关公式建立方程组,即可求得与的值; (2)根据题意,可知不低于4分包括了得分为4分、5分、6分三种情况,之后应用乘法和加法公式求得结果. (1)依题,解得 (2)由题令该新同学在社团方面获得本选修课学分的分数为, 获得本选修课学分分数不低于4分为事件, 则;;. 故.
复制答案
考点分析:
相关试题推荐

已知椭圆C过点M1),两个焦点为A(﹣10),B10),O为坐标原点.

1)求椭圆C的方程;

2)直线l过点A(﹣10),且与椭圆C交于PQ两点,求BPQ面积的最大值.

 

查看答案

如图,四棱锥的底面是平行四边形,侧面是边长为2的正三角形, ,.

(Ⅰ)求证:平面平面

(Ⅱ)设是棱上的点,当平面时,求二面角的余弦值.

 

查看答案

已知函数.

(1)求函数的最小值;

(2)若对任意的恒成立,求实数t的取值范围.

 

查看答案

已知分别为三个内角的对边, .

(1)求

(2)若的中点, ,求的面积.

 

查看答案

恒成立,则的取值范围为__________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.