已知动圆恒过点,且与直线相切.
(Ⅰ)求圆心的轨迹方程;
(Ⅱ)动直线过点,且与点的轨迹交于,两点,点与点关于轴对称,求证:直线恒过定点.
如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.
(1)若为的中点,求证:面;
(2)若二面角为,设,试确定的值.
据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:
送货单数 | 30 | 40 | 50 | 60 | |
天数 | 甲 | 10 | 10 | 20 | 10 |
乙 | 5 | 15 | 25 | 5 |
已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪元,每单抽成元;乙公司规定底薪元,每日前单无抽成,超过单的部分每单抽成元.
(1)分别求甲、乙快递公司的快递员的日工资(单位:元)与送货单数的函数关系式;
(2)若将频率视为概率,回答下列问题:
①记甲快递公司的快递员的日工资为(单位:元),求的分布列和数学期望;
②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
在中,角所对的边分别是满足:,且成等比数列.
(Ⅰ)求角的大小;
(Ⅱ)若,判断三角形的形状.
已知是定义在上的奇函数,且满足,,数列满足,,其中是数列的前项和,则______.
过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为________.