在如图所示的几何体中,四边形是菱形,是矩形,平面平面.,, 且点为的中点.
(1) 求证:平面;
(2) 求与平面所成角的正弦值;
(3) 在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
已知抛物线的顶点在原点,对称轴为坐标轴,它与双曲线:交于点,抛物线的准线过双曲线的左焦点.
(1)求抛物线与双曲线的标准方程;
(2)若斜率为的直线过点且与抛物线只有一个公共点,求直线的方程.
解关于不等式:
已知递增的等比数列满足且是的等差中项.
(1)求数列的通项公式;
(2)若是数列的前项和,求的值.
已知椭圆与双曲线有相同的焦点和,若是、的等比中项,是与的等差中项,则椭圆的离心率是________.
《张丘建算经》卷上第题中 “女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布尺,天共织布尺,则该女子织布每天增加______________尺.