满分5 > 高中数学试题 >

在平面直角坐标系中,曲线的参数方程为,其中为参数,.在以坐标原点为极点,轴的正半...

在平面直角坐标系中,曲线的参数方程为,其中为参数,.在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点.求点到直线的距离的最大值.

 

(1),;(2). 【解析】 (1) 已知直线的极坐标方程,运用互化公式,,即可求出直角坐标方程.将曲线的参数方程进行消去参数,即可得出曲线的普通方程. (2) 利用曲线的参数方程表示出点坐标,再写出点的直角坐标,便得出中点坐标,利用点到直线的距离公式求出点到直线的距离的最大值. (1)∵直线的极坐标方程为,即. 由,,可得直线的直角坐标方程为. 将曲线的参数方程消去参数,得曲线的普通方程为. (2)设. 点的极坐标化为直角坐标为. 则. ∴点到直线的距离. 当,即时,等号成立. ∴点到直线的距离的最大值为.
复制答案
考点分析:
相关试题推荐

已知函数

(1)若在其定义域上是单调增函数,求实数的取值集合;

(2)当时,函数有零点,求的最大值

 

查看答案

在平面直角坐标系xOy中,已知抛物线C:的焦点为F,过F的直线交抛物线C于A,B两点.

(1)求线段AF的中点M的轨迹方程;

(2)已知△AOB的面积是△BOF面积的3倍,求直线的方程.

 

查看答案

如图,在四棱锥中,平面,点的中点,.

(1)证明:平面

(2)求点到平面的距离.

 

查看答案

中,内角的对边分别为,且满足.

(1)求的值;

(2)若,求的值.

 

查看答案

2022年第24届冬奥会将在中国北京和张家口举行,为了宣传冬奥会,某大学从全校学生中随机抽取了120名学生,对是否收看第23届平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:

 

收看

没收看

男生

60

20

女生

20

20

 

1)根据上表数据,能否有的把握认为,收看开幕式与性别有关?

2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动,若从这8人中随机选取2人到较广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率.

附:,其中.

P

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

 

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.