设函数.
(1)求不等式的解集;
(2)若不等式的解集为实数集,求的取值范围.
在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长.
设、为曲线上两点,与的横坐标之和为.
(1)求直线的斜率;
(2)设弦的中点为,过点、分别作抛物线的切线,则两切线的交点为,过点作直线,交抛物线于、两点,连接、.证明:.
设函数,.
(I)求函数的单调区间;
(Ⅱ)若方程在上有解,证明:.
在四棱锥P–ABCD中,,.
(1)设AC与BD相交于点M,,且平面PCD,求实数m的值;
(2)若,,,且,求二面角的余弦值.
某工厂预购买软件服务,有如下两种方案:
方案一:软件服务公司每日收取工厂元,对于提供的软件服务每次元;
方案二:软件服务公司每日收取工厂元,若每日软件服务不超过次,不另外收费,若超过次,超过部分的软件服务每次收费标准为元.
(1)设日收费为元,每天软件服务的次数为,试写出两种方案中与的函数关系式;
(2)该工厂对过去天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.