若集合,集合,则
A. B. C. D.
设函数.
(1)求不等式的解集;
(2)若不等式的解集为实数集,求的取值范围.
在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长.
设、为曲线上两点,与的横坐标之和为.
(1)求直线的斜率;
(2)设弦的中点为,过点、分别作抛物线的切线,则两切线的交点为,过点作直线,交抛物线于、两点,连接、.证明:.
设函数,.
(I)求函数的单调区间;
(Ⅱ)若方程在上有解,证明:.
在四棱锥P–ABCD中,,.
(1)设AC与BD相交于点M,,且平面PCD,求实数m的值;
(2)若,,,且,求二面角的余弦值.