某学校为了解学生的体育锻炼时间,采用简单随机抽样方法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下:
分组 | ||||||
男生人数 | 2 | 16 | 19 | 18 | 5 | 3 |
女生人数 | 3 | 20 | 10 | 2 | 1 | 1 |
若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”.
(1)将频率视为概率,估计该校4000名学生中“锻炼达人”有多少?
(2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动.
①求男生和女生各抽取了多少人?
②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男女各1人的概率.
如图,三棱锥中,面面ABC,,且,.
(1)求证:;
(2)当PC的长为多少时,平面PBC?并求出此时三棱锥的体积.
已知a,b,c分别为锐角三角形三个内角A,B,C的对边,且.
(1)求A;
(2)若,的面积为,求b,c.
关于函数,有以下四个命题:
①函数的定义域为;
②函数的值域为;
③函数在区间上是单调递增函数;
④函数的图象关于直线对称.
其中所有正确命题的序号是________.
已知各项不为0的等差数列{an}满足2a2-+2a12=0,数列{bn}是等比数列,且b7=a7,则b3b11等于____________.
计算:______.