设抛物线上一点P到x轴的距离是2,则点P到该抛物线焦点的距离是( )
A.1 B.2 C.3 D.4
已知,则( )
A. B.
C. D.
设函数.
(1)当时,求曲线在点处的切线方程;
(2)若时,不等式恒成立,求a的值.
已知椭圆C:的右焦点坐标为,且点在C上.
(1)求椭圆的方程;
(2)过点的直线l与C交于M,N两点,P为线段MN的中点,A为C的左顶点,求直线AP的斜率k的取值范围.
某学校为了解学生的体育锻炼时间,采用简单随机抽样方法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下:
分组 | ||||||
男生人数 | 2 | 16 | 19 | 18 | 5 | 3 |
女生人数 | 3 | 20 | 10 | 2 | 1 | 1 |
若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”.
(1)将频率视为概率,估计该校4000名学生中“锻炼达人”有多少?
(2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动.
①求男生和女生各抽取了多少人?
②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男女各1人的概率.
如图,三棱锥中,面面ABC,,且,.
(1)求证:;
(2)当PC的长为多少时,平面PBC?并求出此时三棱锥的体积.