已知函数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求函数的极值.
如图,在四棱锥O﹣ABCD中,OA⊥底面ABCD,且底面ABCD是边长为2的正方形,且OA=2,M,N分别为OA,BC的中点.
(1)求证:直线MN平面OCD;
(2)求点B到平面DMN的距离.
某工厂拟建一座平面图(如右图所示)为矩形且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).
(1)写出总造价y(元)与污水处理池长x(米)的函数关系式,并指出其定义域;
(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求最低总造价.
若命题“∃t∈R,t2-2t-a<0”是假命题,则实数a的取值范围是 ______.
从抛物线上一点P引抛物线准线的垂线,垂足为M,且,设抛物线的焦点为F,则△MPF的面积为 .
如图,阴影区域是由函数的一段图象与轴围成的封闭图形,则该阴影区域的面积是_____________.