在直角坐标系中,以原点为极点,以轴的正半轴为极轴,曲线的极坐标方程为.
(1)将曲线的极坐标方程化为直角坐标方程;
(2)过点作倾斜角为的直线与圆交于,两点,试求的值.
设.
(Ⅰ)讨论的单调区间;
(Ⅱ)当时,在上的最小值为,求在上的最大值.
已知椭圆的方程为,是椭圆上的一点,且在第一象限内,过且斜率等于-1的直线与椭圆交于另一点,点关于原点的对称点为.
(1)证明:直线的斜率为定值;
(2)求面积的最大值.
如图,在以为顶点,母线长为的圆锥中,底面圆的直径长为2,是圆所在平面内一点,且是圆的切线,连接交圆于点,连接,.
(1)求证:平面平面;
(2)若是的中点,连接,,当二面角的大小为时,求平面与平面所成锐二面角的余弦值.
某鲜花店每天制作、两种鲜花共束,每束鲜花的成本为元,售价元,如果当天卖不完,剩下的鲜花作废品处理.该鲜花店发现这两种鲜花每天都有剩余,为此整理了过往100天这两种鲜花的日销量(单位:束),得到如下统计数据:
种鲜花日销量 | 48 | 49 | 50 | 51 |
天数 | 25 | 35 | 20 | 20 |
|
|
|
|
|
两种鲜花日销量 | 48 | 49 | 50 | 51 |
天数 | 40 | 35 | 15 | 10 |
以这100天记录的各销量的频率作为各销量的概率,假设这两种鲜花的日销量相互独立.
(1)记该店这两种鲜花每日的总销量为束,求的分布列.
(2)鲜花店为了减少浪费,提升利润,决定调查每天制作鲜花的量束.以销售这两种鲜花的日总利润的期望值为决策依据,在每天所制鲜花能全部卖完与之中选其一,应选哪个?
已知数列的各项均为正数,前项和为,,.
(1)求数列的项;
(2)求数列的前项和.