满分5 > 高中数学试题 >

如图,在等腰三角形与中,,平面平面,,分别为,的中点,则异面直线与所成的角为( ...

如图,在等腰三角形中,,平面平面分别为的中点,则异面直线所成的角为(   

A. B. C. D.

 

B 【解析】 设,利用向量的夹角公式,计算出异面直线与夹角的余弦值,由此求得异面直线与所成的角. 由于在等腰三角形与中,,平面平面,根据面面垂直的性质定理可知平面,平面,所以.依题意设,由于是等腰直角三角形斜边的中点,所以.设异面直线与所成的角为,则,由于,所以. 故选:B
复制答案
考点分析:
相关试题推荐

几何学史上有一个著名的米勒问题:“设点是锐角的一边上的两点,试在边上找一点,使得最大”.如图,其结论是:点为过两点且和射线相切的圆的切点.根据以上结论解决以下问题:在平面直角坐标系中,给定两点,点轴上移动,当取最大值时,点的横坐标是(   

A. B. C. D.

 

查看答案

为正项等比数列的前项和,若,且,则(   )

A. B. C. D.

 

查看答案

,则下列不等式恒成立的是(    )

A. B. C. D.

 

查看答案

已知集合,则(     )

A. B.

C. D.

 

查看答案

已知函数.

(1)在平面直角坐标系中作出函数的图象;

(2)若当时,不等式恒成立,求的最大值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.