已知函数.
(1)解不等式;
(2)若不等式的解集为,且满足,求实数的取值范围.
已知曲线的参数方程为(为参数);直线(,)与曲线相交于两点,以极点为原点,极轴为轴的负半轴建立平面直角坐标系.
(1)求曲线的极坐标方程;
(2)记线段的中点为,若恒成立,求实数的取值范围.
函数,其中,,为实常数
(1)若时,讨论函数的单调性;
(2)若时,不等式在上恒成立,求实数的取值范围;
(3)若,当时,证明:.
已知曲线,曲线,且与的焦点之间的距离为,且与在第一象限的交点为.
(1)求曲线的方程和点的坐标;
(2)若过点且斜率为的直线与的另一个交点为,过点与垂直的直线与的另一个交点为.设,试求取值范围.
如图,在四棱锥中,四边形为梯形,,且,是边长为2的正三角形,顶点在上的射影为点,且,,.
(1)证明:平面平面;
(2)求二面角的余弦值.
某市场研究人员为了了解产业园引进的甲公司前期的经营状况,采集相应数据,对该公司2017年连续六个月的利润进行了统计,并绘制了相应的折线图,如图所示:
(1)折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2018年1月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有采购成本分别为10万元包和12万元包的、两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,不同类型的新型材料损坏的时间各不相同,已知生产新型材料的企业乙对、两种型号各100件新型材料进行过科学模拟测试,得到两种新型材料使用寿命频数统计如表:
使用寿命 材料类型 | 1个月 | 2个月 | 3个月 | 4个月 | 总计 |
20 | 35 | 35 | 10 | 100 | |
10 | 30 | 40 | 20 | 100 |
经甲公司测算,平均每包新型材料每月可以带来5万元收入,不考虑除采购成本之外的其他成本,假设每包新型材料的使用寿命都是整数月,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?
参考数据:,.
参考公式:回归直线方程为,其中.