下列几何体中为圆柱的是( )
A. B. C. D.
[选修4-5:不等式选讲]:已知函数.
(1)当时,求不等式的解集;
(2)设,,且的最小值为.若,求的最小值.
在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求和的直角坐标方程;
(2)已知直线与轴交于点,且与曲线交于,两点(在第一象限),则的值.
已知函数的图像在点处的切线方程为.
(1)求的表达式;
(2)当时,恒成立,求的取值范围.
已知椭圆过点.
(1)求椭圆的方程,并求其离心率;
(2)过点作轴的垂线,设点为第四象限内一点且在椭圆上(点不在直线上),点关于的对称点为,直线与交于另一点.设为原点,判断直线与直线的位置关系,并说明理由.
某中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
| 锻炼不达标 | 锻炼达标 | 合计 |
男 |
|
|
|
女 |
| 20 | 110 |
合计 |
|
|
|
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出5人,进行体育锻炼体会交流,再从这5人中选出2人作重点发言,求作重点发言的2人中,至少1人是女生的概率.
参考公式:,其中.
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |