在平面直角坐标系xOy中,曲线C的参数方程为(a为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.
(1)求C的普通方程和l的倾斜角;
(2)设点,l和C交于A,B两点,求.
若定义在上的函数,.
(1)求函数的单调区间;
(2)若、、满足,则称比更接近.当,试比较和哪个更接近,并说明理由.
已知椭圆的一个顶点为,焦点在轴上,若椭圆右焦点到直线的距离为3.
(1)求椭圆的方程;
(2)设直线与该椭圆交于不同的两点,,若坐标原点到直线的距离为,求面积的最大值.
如图,在五面体ABCDPN中,棱PA⊥面ABCD,AB=AP=2PN,底面ABCD是菱形,∠BAD= .
(1)求证:PN∥AB;
(2)求NC与平面BDN所成角的正弦值.
微信红包是一款可以实现收发红包、查收记录和提现的手机应用.某网络运营商对甲、乙两个品牌各5种型号的手机在相同环境下抢到的红包个数进行统计,得到如表数据:
手机品牌型号 | |||||
甲品牌(个 | 4 | 3 | 8 | 6 | 12 |
乙品牌(个 | 5 | 7 | 9 | 4 | 3 |
手机品牌红包个数 | 优 | 非优 | 合计 |
甲品牌(个 |
|
|
|
乙品牌(个 |
|
|
|
合计 |
|
|
|
(1)如果抢到红包个数超过5个的手机型号为“优”,否则“非优”,请完成上述列联表,据此判断是否有的把握认为抢到的红包个数与手机品牌有关?
(2)如果不考虑其它因素,要从甲品牌的5种型号中选出3种型号的手机进行大规模宣传销售.以表示选中的手机型号中抢到的红包超过5个的型号种数,求随机变量的分布列及数学期望.
下面临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
已知数列中,,其前项的和为,且满足.
(1)证明:数列是等差数列;
(2)证明:.