已知函数,,函数的图象在点处的切线平行于轴.
(Ⅰ)求的值
(Ⅱ)设,若的所有零点中,仅有两个大于,设为,()
(1)求证:,.
(2)过点,的直线的斜率为,证明:.
已知动圆与圆:相切,且与圆:相内切,记圆心的轨迹为曲线.设为曲线上的一个不在轴上的动点,为坐标原点,过点作的平行线交曲线于,两个不同的点.
(Ⅰ)求曲线的方程;
(Ⅱ)试探究和的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(Ⅲ)记的面积为,的面积为,令,求的最大值.
如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.
(1)求证:平面平面;
(2)若为棱的中点,求异面直线与所成角的余弦值;
(3)若二面角大小为,求的长.
某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | ||
第2组 | ① | ||
第3组 | 30 | ② | |
第4组 | 20 | ||
第5组 | 10 |
(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.
已知二次函数f(x)的最小值为﹣4,且关于x的不等式f(x)≤0的解集为{x|﹣1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
(2)求函数g(x)的零点个数.