已知向量,,且,则与的夹角为( )
A. B. C. D.
设,则的虚部是( )
A.1 B. C. D.
已知集合,,则( )
A. B. C. D.
已知函数,,函数的图象在点处的切线平行于轴.
(Ⅰ)求的值
(Ⅱ)设,若的所有零点中,仅有两个大于,设为,()
(1)求证:,.
(2)过点,的直线的斜率为,证明:.
已知动圆与圆:相切,且与圆:相内切,记圆心的轨迹为曲线.设为曲线上的一个不在轴上的动点,为坐标原点,过点作的平行线交曲线于,两个不同的点.
(Ⅰ)求曲线的方程;
(Ⅱ)试探究和的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(Ⅲ)记的面积为,的面积为,令,求的最大值.
如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.
(1)求证:平面平面;
(2)若为棱的中点,求异面直线与所成角的余弦值;
(3)若二面角大小为,求的长.