满分5 > 高中数学试题 >

在直角坐标系中,曲线的方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐...

在直角坐标系中,曲线的方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求交点的直角坐标;

(2)设点的极坐标为,点是曲线上的点,求面积的最大值.

 

(1), ; (2). 【解析】 (1)结合,得到曲线的普通方程,计算交点坐标,即可。(2)结合三角形面积计算公式, 结合三角函数性质,计算最值,即可。 (Ⅰ),,∴,∴. 联立方程组得,解得,, ∴所求交点的坐标为,. (Ⅱ)设,则. ∴的面积 ∴当时,.
复制答案
考点分析:
相关试题推荐

已知点A02),动点M到点A的距离比动点M到直线y=﹣1的距离大1,动点M的轨迹为曲线C

1)求曲线C的方程;

2Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为DE,求△QDE的面积S的最小值

 

查看答案

已知函数fxx3+ax2+bx,且f(﹣1)=0

1)试用含a的代数式表示b

2)求fx)的单调区间;

3)令a=﹣1,设函数fx)在x1x2x1x2)处取得极值,记点Mx1fx1)),Nx2fx2)).证明:线段MN与曲线fx)存在异于MN的公共点.

 

查看答案

如图1,在梯形ABCD中,ADBCABBC2EAD的中点,OACBE的交点,将△ABE沿BE翻折到图2中△A1BE的位置得到四棱锥A1BCDE

1)求证:CDA1C

2)若A1CBE2,求点C到平面A1ED的距离.

 

查看答案

自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:

 

20以下

[2030

[3040

[4050

[5060

[6070]

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

 

1)现随机抽取1名顾客,试估计该顾客年龄在[3050)且未使用自由购的概率;

2)从被抽取的年龄在[5070]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[5060)的概率;

3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?

 

查看答案

的内角的对边分别为.已知

(1)求

(2)设边上一点,且,求的面积.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.