已知函数
,其中
.
(Ⅰ)当
时,求函数
在点
处的切线方程;
(Ⅱ)设函数
的导函数是
,若不等式
对于任意的实数
恒成立,求实数
的取值范围;
(Ⅲ)设函数
,
是函数
的导函数,若函数
存在两个极值点
,
,且
,求实数
的取值范围.
如图,圆柱体木材的横截面半径为
,从该木材中截取一段圆柱体,再加工制作成直四棱柱
,该四棱柱的上、下底面均为等腰梯形,分别内接于圆柱的上、下底面,下底面圆的圆心
在梯形
内部,
,
,
,设
.

(1)求梯形
的面积;
(2)当
取何值时,直四棱柱
的体积最大?并求出最大值(注:木材的长度足够长)
已知椭圆
的左焦点为F,上顶点为A,直线AF与直线
垂直,垂足为B,且点A是线段BF的中点.
(I)求椭圆C的方程;
(II)若M,N分别为椭圆C的左,右顶点,P是椭圆C上位于第一象限的一点,直线MP与直线
交于点Q,且
,求点P的坐标.
如图,在三棱锥
中,
分别为棱
上的中点.

(1)求证:
平面
;
(2)若
平面
,求证:平面
平面
.
已知
是锐角三角形,向量
,且
.
(1)求
的值;
(2)若
,求
的长.
已知函数
,
,若函数
,有6个不同的零点.则实数
的范围是______.
