满分5 > 高中数学试题 >

已知曲线C的参数方程为(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极...

已知曲线C的参数方程为φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为

1)直线l与曲线C是否有公共点?并说明理由;

2)若直线l与两坐标轴的交点为AB,点P是曲线C上的一点,求△PAB的面积的最大值.

 

(1)没有交点,理由见详解;(2)3. 【解析】 (1)将曲线的参数方程化为普通方程,将直线的极坐标方程化为直角方程,联立方程组,根据的情况,求得两曲线的相交情况; (2)由(1)中所求,容易得点的坐标,设点坐标为(3cosθ,sinθ),再将问题转化为三角函数值域的问题即可求得. (1)曲线C的参数方程为(φ为参数), 转换为直角坐标方程为. 直线l的极坐标方程为, 整理得, 转换为直角坐标方程为x﹣y﹣6=0, 联立方程组 消去,可得10y2+12y+27=0, 由于△=122﹣4×10×27<0,所以直线与椭圆没有交点. (2)直线的直角坐标方程为x﹣y﹣6=0, 与x轴的交点A(6,0)与y轴的交点坐标为B(0,6), 所以|AB|, 设椭圆上点P的坐标为(3cosθ,sinθ), 所以点P到直线l的距离d , 当时,, 则3.
复制答案
考点分析:
相关试题推荐

已知抛物线Cx22pyp0)的焦点为(0,1

1)求抛物线C的方程;

2)设直线l2ykx+m与抛物线C有唯一公共点P,且与直线l1y=﹣1相交于点Q,试问,在坐标平面内是否存在点N,使得以PQ为直径的圆恒过点N?若存在,求出点N的坐标,若不存在,说明理由.

 

查看答案

已知函数fx)=aex2x+1

1)当a1时,求函数fx)的极值;

2)若fx)>0xR成立,求实数a的取值范围

 

查看答案

在长方体ABCDA1B1C1D1中,底面ABCD是边长为2的正方形,EAB的中点,FBC的中点

1)求证:EF∥平面A1DC1

2)若长方体ABCDA1B1C1D1中,夹在平面A1DC1与平面B1EF之间的几何体的体积为,求点D到平面B1EF的距离.

 

查看答案

ABC中,角ABC的对边分别为abc,且(a+bc)(sinA+sinB+sinC)=bsinA

1)求C

2)若a2c5,求△ABC的面积.

 

查看答案

某校为了了解高一新生是否愿意参加军训,随机调查了80名新生,得到如下2×2列联表

 

愿意

不愿意

合计

x

5

M

y

z

40

合计

N

25

80

 

1)写出表中xyzMN的值,并判断是否有99.9%的把握认为愿意参加军训与性别有关;

2)在被调查的不愿意参加军训的学生中,随机抽出3人,记这3人中男生的人数为ξ,求ξ的分布列和数学期望.

参考公式:

附:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.