满分5 > 高中数学试题 >

某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[...

某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60)[60,70)[70,80)[80,90)[90,100]

(1)求图中a的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.

分数段

[50,60)

[60,70)

[70,80)

[80,90)

xy

11

21

34

45

 

 

 

(1)(2) (分)(3) 【解析】 (1)由频率分布直方图的性质列方程即可得到的值; (2)由平均数加权公式可得平均数,计算出结果即可; (3)按表中所给的数据分别计算出数学成绩在分数段的人数,从总人数中减去这些段内的人数即可得出数学成绩在之外的人数. 解(1)由频率分布直方图知(2a+0.02+0.03+0.04)×10=1,解得a=0.005. (2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分). (3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为 0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20. 由题中给出的比例关系知数学成绩在上述各分数段的人数依次为 . 故数学成绩在[50,90)之外的人数为100-(5+20+40+25)=10.
复制答案
考点分析:
相关试题推荐

已知圆经过两点,且圆心在直线上.

(1)求圆的方程;

(2)设圆轴相交于两点,点为圆上不同于的任意一点,直线轴于点.当点变化时,以为直径的圆是否经过圆内一定点?请证明你的结论.

 

查看答案

命题:方程有实数解,命题:方程表示焦点在轴上的椭圆.

(1) 若命题为真,求的取值范围;

(2) 若命题为真,求的取值范围.

 

查看答案

已知,若点在直线上,则的最小值为___________.

 

查看答案

已知点,点F是直线l:上的一个动点,当最大时,过点MNF的圆的方程是__________.

 

查看答案

已知xy满足约束条件,的最小值为_____________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.