已知函数.
(1)求函数的单调区间;
(2)若恒成立,求的值.
已知直线与抛物线交于A,B两点.
若以AB为直径的圆经过原点,求m的值;
以AB为直角边作直角三角形ABC,若的三个顶点同在一个圆心为的圆上,求圆T的面积.
如图,三棱柱中,侧面是菱形,其对角线的交点为O,且,C.
求证:平面;
设,若直线AB与平面所成的角为,求三棱锥的体积.
基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月的市场占有率进行了统计,结果如表:
月份 | ||||||
月份代码x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 11 | 13 | 16 | 15 | 20 | 21 |
请用相关系数说明能否用线性回归模型拟合y与月份代码x之间的关系,如果能,请计算出y关于x的线性回归方程,并预测该公司2018年12月的市场占有率如果不能,请说明理由.
根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元辆和800元辆的A,B两款车型,报废年限各不相同考虑公司的经济效益,该公司决定对两款单车进行科学模拟测试,得到两款单车使用寿命频数表如表:
报废年限 车型 | 1年 | 2年 | 3年 | 4年 | 总计 |
A | 10 | 30 | 40 | 20 | 100 |
B | 15 | 40 | 35 | 10 | 100 |
经测算,平均每辆单车每年可以为公司带来收入500元不考虑除采购成本以外的其他成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,分别以这100辆单车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择釆购哪款车型?
参考数据:,,
参考公式:相关系数
回归直线方程中的斜率和截距的最小二乘估计公式分别为:,.
已知a,b,c分别为△ABC三个内角A,B,C的对边,2bcosA=acosC+ccosA.
(1)求角A的大小;
(2)若a=3,△ABC的周长为8,求△ABC的面积.
若直线是曲线的切线,也是曲线的切线,则___________.