2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.
(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?
| 对服务好评 | 对服务不满意 | 合计 |
对商品好评 | 140 |
|
|
对商品不满意 |
| 10 |
|
合计 |
|
| 200 |
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.
①求随机变量X的分布列;
②求X的数学期望和方差.
附:,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
如图,已知矩形所在平面垂直于直角梯形所在平面,平面平面,且,且.
(1)设点为棱中点,在面内是否存在点,使得平面?若存在,请证明,若不存在,说明理由;
(2)求二面角的余弦值.
已知等差数列{an}的首项为a1,公差为d,且关于x的不等式dx2﹣a1x﹣3<0的解集为{x|﹣1<x<3}.
(1)求数列{an}的通项公式;
(2)若,求数列{bn}前n项和Sn.
设函数f(x),已知对任意的a∈[1,3],若(k∈R且k>0),恒有f(x1)≥f(x2),则k的最小值是_____.
如图是各棱长均相等的某三棱锥表面展开图,Q是DF的中点.则在原三棱锥中BQ与EF所成角的余弦值为_____.
若直线(a>0,b>0)过点(1,2),则a+b的最小值为_____.