满分5 > 高中数学试题 >

如图,在四棱锥中,底面为正方形,底面,,为线段的中点. (1)若为线段上的动点,...

如图,在四棱锥中,底面为正方形,底面为线段的中点.

1)若为线段上的动点,证明:平面平面

2)若为线段上的动点(不含),,三棱锥的体积是否存在最大值?如果存在,求出最大值;如果不存在,请说明理由.

 

(1)证明见解析;(2)存在,. 【解析】 (1)利用,可得平面,根据面面垂直的判定定理可证平面平面; (2) 由底面,得平面平面.将问题转化为点到直线的距离有无最大值即可解决. (1)证明:因为,为线段的中点,所以, 因为底面,平面,所以, 又因为底面为正方形,所以,, 所以平面, 因为平面,所以, 因为,所以平面, 因为平面,所以平面平面. (2)由底面,则平面平面, 所以点到平面的距离(三棱锥的高)等于点到直线的距离, 因此,当点在线段,上运动时,三棱锥的高小于或等于2, 当点在线段上运动时,三棱锥的高为2, 因为的面积为, 所以当点在线段上,三棱锥的体积取得最大值, 最大值为. 由于三棱锥的体积等于三棱锥的体积, 所以三棱锥的体积存在最大值.
复制答案
考点分析:
相关试题推荐

中国北京世界园艺博览会于2019429日至107日在北京市延庆区举行.组委会为方便游客游园,特推出“导引员”服务.“导引员”的日工资方案如下:

方案:由三部分组成

(表一)

底薪

150

工作时间

6/小时

行走路程

11/公里

 

方案:由两部分组成:(1)根据工作时间20/小时计费;(2)行走路程不超过4公里时,按10/公里计费;超过4公里时,超出部分按15/公里计费.已知“导引员”每天上班8小时,由于各种因素,“导引员”每天行走的路程是一个随机变量.试运行期间,组委会对某天100名“导引员”的行走路程述行了统计,为了计算方便对日行走路程进行取整处理.例如行走1.8公里按1公里计算,行走5.7公里按5公里计算.如表所示:

(表二)

行走路程

(公里)

人数

5

10

15

45

25

 

(Ⅰ)分别写出两种方案的日工资(单位:元)与日行走路程(单位:公里)的函数关系

(Ⅱ)①现按照分层抽样的方工式从共抽取5人组成爱心服务队,再从这5人中抽取3人当小红帽,求小红帽中恰有1人来自的概率;

②“导引员”小张因为身体原因每天只能行走12公里,如果仅从日工资的角度考虑,请你帮小张选择使用哪种方案会使他的日工资更高?

 

查看答案

中,角的对边分别为,已知.

1)若的面积为,求的值;

2)若,且角为钝角,求实数的取值范围.

 

查看答案

双曲线的左、右焦点分别为右支上的一点,轴交于点的内切圆在边上的切点为,若,则的离心率为____.

 

查看答案

在四面体中,都是边长为2的等边三角形,且平面平面,则该四面体外接球的体积为_______

 

查看答案

数列满足,且对于任意的都有,,则_______

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.