某销售公司在当地、两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了、两家超市往年同期各50天的该食品销售记录,得到如下数据:
销售件数 | 8 | 9 | 10 | 11 |
频数 | 20 | 40 | 20 | 20 |
以这些数据的频数代替两家超市的食品销售件数的概率,记表示这两家超市每日共销售食品件数,表示销售公司每日共需购进食品的件数.
(1)求的分布列;
(2)以销售食品利润的期望为决策依据,在与之中选其一,应选哪个?
已知数列的前项和为,且(),数列满足,().
(Ⅰ)求数列通项公式;
(Ⅱ)记数列的前项和为,证明:.
已知在四棱锥中,,,是的中点,是等边三角形,平面平面.
(1)求证:平面;
(2)求二面角的余弦值.
在中,内角,,的对边分别为,,,设的面积为,.
(1)求的值;
(2)若,,求的值.
已知函数,若,则不等式的解集为__________,若存在实数,使函数有两个零点,则的取值范围是__________.
若一个圆柱的轴截面是面积为4的正方形,则该圆柱的外接球的表面积为_______.