已知点的极坐标为,则它的直角坐标是( )
A. B. C. D.
已知函数.
(1)设在平面直角坐标系中作出的图象,并写出不等式的解集.
(2)设函数,,若,求的取值范围.
在平面直角坐标系中,曲线的参数方程为,(为参数),将曲线按伸缩变换公式,变换得到曲线.
(1)求的普通方程;
(2)直线过点,倾斜角为,若直线与曲线交于,两点,为的中点,求的面积.
已知函数.
(1)当时,若函数在,()处导数相等,证明:;
(2)是否存在,使直线是曲线的切线,也是曲线的切线,而且这样的直线是唯一的,如果存在,求出直线方程,如果不存在,请说明理由.
设抛物线的焦点为,是上任意一点.
(1)证明:以线段为直径的圆与轴相切;
(2)若直线与交于,两点,且,求的值.
改革开放以来,我国农村7亿多贫困人口摆脱贫困,贫困发生率由1978年的97.5%下降到2018年底的1.4%,创造了人类减贫史上的中国奇迹,为全球减贫事业贡献了中国智慧和中国方案.“贫困发生率”是指低于贫困线的人口占全体人口的比例.2012年至2018年我国贫困发生率的数据如下表:
年份() | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
贫困发生率(%) | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)从表中所给的7个贫困发生率数据中任选两个,求至少有一个低于5%的概率;
(2)设年份代码,利用回归方程,分析2012年至2018年贫困发生率的变化情况,并预测2019年贫困发生率.
附:回归直线的斜率和截距的最小二乘估计公式分别为:,.