满分5 > 高中数学试题 >

某公司采用招考方式引进人才,规定必须在、、三个测试点中任意选取两个进行测试,若在...

某公司采用招考方式引进人才,规定必须在三个测试点中任意选取两个进行测试,若在这两个测试点都测试合格,则可参加面试,否则不被录用,已知考生在每个测试点测试结果互不影响,若考生小李和小王一起前来参加招考,小李在测试点测试合格的概率分别为,小王在上述三个测试点测试合格的概率都是.

1)问小李选择哪两个测试点测试才能使得可以参加面试的可能性最大?请说明理由;

2)假设小李选择测试点进行测试,小王选择测试点进行测试,记为两人在各测试点测试合格的测试点个数之和,求随机变量的分布列及数学期望.

 

(1)、测试点,理由见解析;(2)分布列见解析,. 【解析】 (1)利用独立事件的概率乘法公式分别计算出小李选择、或、或、测试点测试合格的概率,比较大小后可得出结论; (2)由题意可知,随机变量的可能取值有、、、、,利用独立事件的概率乘法公式计算出随机变量在不同取值下的概率,可得出随机变量的概率分布列,进而可求得随机变量的数学期望的值. (1)设考生小李在、、各测试点测试合格记为事件、、,且各个事件相互独立,由题意,,, 若选择在、测试点测试,则参加面试的概率为; 若选择在、测试点测试,则参加面试的概率为; 若选择在、测试点测试,则参加面试的概率为. 因为,所以小李选择在、测试点测试参加面试的可能性最大; (2)记小李在、测试点测试合格记为事件、,记小王在、测试点测试合格记为事件、,则,,且的所有可能取值为、、、、. 所以, , , , . 所以随机变量的分布列为: .
复制答案
考点分析:
相关试题推荐

已知数列{an}的前n项和为Sn,且满足Sn-n=2an-2),(nN*

1)证明:数列{an-1}为等比数列.

2)若bn=anlog2an-1),数列{bn}的前项和为Tn,求Tn

 

查看答案

已知二项式的展开式中前三项的系数成等差数列.

(1)的值;

(2).

的值;

的值;

的最大值.

 

查看答案

为了解某班学生喜欢数学是否与性别有关,对本班人进行了问卷调查得到了如下的列联表,已知在全部人中随机抽取人抽到喜欢数学的学生的概率为.

 

喜欢数学

不喜欢数学

合计

男生

 

 

女生

 

 

合计

 

 

 

1)请将上面的列联表补充完整(不用写计算过程);

2)能否在犯错误的概率不超过的前提下认为喜欢数学与性别有关?说明你的理由;

3)现从女生中抽取人进一步调查,设其中喜欢数学的女生人数为,求的分布列与期望.

下面的临界表供参考:

 

(参考公式:,其中

 

查看答案

个编号为的不同小球全部放入个编号为个不同盒子中.求:

1)每个盒至少一个球,有多少种不同的放法?

2)恰好有一个空盒,有多少种不同的放法?

3)每盒放一个球,并且恰好有一个球的编号与盒子的编号相同,有多少种不同的放法?

4)把已知中个不同的小球换成四个完全相同的小球(无编号),其余条件不变,恰有一个空盒,有多少种不同的放法?

 

查看答案

一个非负整数的有序数对,如果在做的加法时不用进位,则称为“中国梦数对”,称为“中国梦数对”的和,则和为的“中国梦数对”的个数有____________(注:用数字作答).

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.