设分别是椭圆的左、右焦点.
(1)若是该椭圆上的一个动点,求的最大值和最小值;
(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.
如图1,,过动点作,垂足在线段上且异于点,连接,沿将折起,使(如图2所示),
(1)当的长为多少时,三棱锥的体积最大;
(2)当三棱锥的体积最大时,设点分别为棱的中点,试在棱上确定一点,使得,并求与平面所成角的大小.
在中,角,,的对边分别是,,,若,,成等差数列.
(1)求;
(2)若,,求的面积.
已知是定义在上的不恒为零的函数,且对于任意的,满足,,(),().考查下列结论:①;②为偶函数;③数列为等差数列;④数列为等比数列.其中正确的是_______.
从名志愿者中选出人,分别参加两项公益活动,每项活动至少有人,则不同安排方案的种数为_______.(用数字作答)
已知,则二项式的展开式中的系数为_______.