已知函数.
(1)讨论的单调性并指出相应单调区间;
(2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.
已知椭圆:的离心率为,且与抛物线交于,两点, (为坐标原点)的面积为.
(1)求椭圆的方程;
(2)如图,点为椭圆上一动点(非长轴端点),为左、右焦点,的延长线与椭圆交于点,的延长线与椭圆交于点,求面积的最大值.
在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系.
(1)求的极坐标方程;
(2)若直线的极坐标方程分别为,,设直线与曲线的交点为,,,求的面积.
已知命题恒成立;命题q:方程表示双曲线.
若命题p为真命题,求实数m的取值范围;
若命题“”为真命题,“”为假命题,求实数m的取值范围.
设函数f(x)=alnx-bx2(x>0),若函数f(x)在x=1处与直线y=-相切.
(1)求实数a,b的值;
(2)求函数f(x)在上的最大值.
(1)已知复数满足,求.
(2)若均为实数,且,求证:中至少有一个大于0.