某“双一流”大学专业奖学金是以所学专业各科考试成绩作为评选依据,分为专业一等奖学金(奖金额元)、专业二等奖学金(奖金额元)及专业三等奖学金(奖金额元),且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校年名学生周课外平均学习时间频率分布直方图,图(2)是这名学生在年周课外平均学习时间段获得专业奖学金的频率柱状图.
(Ⅰ)求这名学生中获得专业三等奖学金的人数;
(Ⅱ)若周课外平均学习时间超过小时称为“努力型”学生,否则称为“非努力型”学生,列联表并判断是否有的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?
(Ⅲ)若以频率作为概率,从该校任选一名学生,记该学生年获得的专业奖学金额为随机变量,求随机变量的分布列和期望.
已知四棱柱中,底面为菱形,,为中点,在平面上的投影为直线与的交点.
(1)求证:;
(2)求二面角的正弦值.
已知等比数列的首项,前项和为,设,且数列为等比数列.
(1)求,的通项公式;
(2)若数列的前项和为,求的值.
中,角所对应的边分别为,若边上的高等于,当最大时,_________.
已知为抛物线上的两个动点,且,抛物线的焦点为,则面积的最小值为_________.
已知的半衰期为年(是指经过年后,的残余量占原始量的一半).设的原始量为,经过年后的残余量为,残余量与原始量的关系如下:,其中表示经过的时间,为一个常数.现测得湖南长沙马王堆汉墓女尸出土时的残余量约占原始量的.请你推断一下马王堆汉墓的大致年代为距今________年.(已知)