设和是函数的两个极值点,其中.
(1)求的取值范围;
(2)若为自然对数的底数),求的最大值.
如图,已知抛物线和,过抛物线上一点作两条直线与分别相切于两点,分别交抛物线于两点.
(1)当的角平分线垂直轴时,求直线的斜率;
(2)若直线在轴上的截距为,求的最小值.
如图,已知三棱柱的侧棱垂直于底面,,,点分别是和的中点.
(1)证明:平面;
(2)设,当为何值时,平面,试证明你的结论.
某产品的三个质量指标分别为x, y, z, 用综合指标S =" x" + y + z评价该产品的等级. 若S≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:
产品编号 | A1 | A2 | A3 | A4 | A5 |
质量指标(x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
产品编号 | A6 | A7 | A8 | A9 | A10 |
质量指标(x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率;
(Ⅱ) 在该样品的一等品中, 随机抽取两件产品,
(1) 用产品编号列出所有可能的结果;
(2) 设事件B为 “在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率.
已知函数
(I)求函数的最小正周期;
(Ⅱ)求使函数取得最大值的的集合.
在平面直角坐标系中,点在单位圆上,设,且.若,则的值为________________.