己知椭圆的一个顶点坐标为,离心率为,直线交椭圆于不同的两点
(Ⅰ)求椭圆的方程;
(Ⅱ)设点,当的面积为时,求实数的值.
在某亲子游戏结束时有一项抽奖活动,抽奖规则是:盒子里面共有4个小球,小球上分别写有0,1,2,3的数字,小球除数字外其他完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小球放回.抽奖活动的奖励规则是:①若取出的两个小球上数字之积大于4,则奖励飞机玩具一个;②若取出的两个小球上数字之积在区间上,则奖励汽车玩具一个;③若取出的两个小球上数字之积小于1,则奖励饮料一瓶.
(1)求每对亲子获得飞机玩具的概率;
(2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由.
如图,已知四棱锥的底面为直角梯形, ,,底面, 且,是的中点.
(1)证明: 平面;
(2)求棱锥的体积.
已知p:,q:,其中.
(1)若m=3,是真命题,求x的取值范围;
(2)若p是q的充分不必要条件,求实数m的取值范围.
正方体棱长为3,点在边上,且满足,动点在正方体表面上运动,并且总保持,则动点的轨迹的周长为______.
在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角的大小为___________.