已知,.
(1)解不等式
(2)若对,,使得.求实数a的范围.
在直角坐标系xOy中,曲线的参数方程为(t为参数)。以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程和 的直角坐标方程;
(2)若,交于A,B两点,P点极坐标为,求的值.
已知函数
(1)讨论函数的单调性;
(2)当时,求证:.
已知定点,圆,过R点的直线交圆于M,N两点过R点作直线交SM于Q点.
(1)求Q点的轨迹方程;
(2)若A,B为Q的轨迹与x轴的左右交点,为该轨迹上任一动点,设直线AP,BP分别交直线l:于点M,N,判断以MN为直径的圆是否过定点。如圆过定点,则求出该定点;如不是,说明理由.
越接近高考学生焦虑程度越强,四个高三学生中大约有一个有焦虑症,经有关机构调查,得出距离高考周数与焦虑程度对应的正常值变化情况如下表周数
周数x | 6 | 5 | 4 | 3 | 2 | 1. |
正常值y | 55 | 63 | 72 | 80 | 90 | 99 |
其中,,,
(1)作出散点图;
(2)根据上表数据用最小二乘法求出y关于x的线性回方程(精确到0.01)
(3)根据经验观测值为正常值的0.85~1.06为正常,若1.06~1.12为轻度焦虑,1.12~1.20为中度焦虑,1.20及以上为重度焦虑。若为中度焦虑及以上,则要进行心理疏导。若一个学生在距高考第二周时观测值为103,则该学生是否需要进行心理疏导?
四棱锥P﹣ABCD中平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,M为AD中点,PA=PD,AD=AB=2CD=2.
(1)求证:平面PMB⊥平面PAC;
(2)求二面角A﹣PC﹣D的余弦值.