如图,在等腰梯形ABCD中,AB//CD,∠ABC=,BC=CD=CE=1,EC⊥平面ABCD,EFAC,P是线段EF上的动点
(1)求证:平面BCE⊥平面ACEF;
(2)求平面PAB与平面BCE所成锐二面角的最小值
某中学为调查高三学生英语听力水平的情况,随机抽取了高三年级的80名学生进行测试,根据测试结果绘制了英语听力成绩(满分为30分)的频率分布直方图,将成绩不低于27分的定为优秀
(1)根据已知条件完成下面的列联表,并据此资料判断是否有90%的把握认为英语听力成绩是否优秀与性别有关?
| 英语听力优秀 | 非英语听力优秀 | 合计 |
男同学 | 10 |
|
|
女同学 |
|
| 36 |
合计 |
|
|
|
(2)将上述调查所得到的频率视为概率,现在从该校高三学生中,采取随机抽样方法每次抽取1名学生,共抽取3次,记被抽取的3名学生中“英语听力优秀”的人数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望E(X)
参考公式:,其中
参考临界值:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
设数列的前项和为,且,正项等比数列的前项和为,且,
(1)求数列和的通项公式;
(2)在数列中,,且,求的通项公式
已知点F是抛物线的焦点,点M为抛物线C上任意一点,过点M向圆作切线,切点分别为A、B,则四边形AFBM的面积的最小值为______
已知函数满足,当时,的值为_____
若函数的图象向右平移个单位后得到的图象对应的函数是一个奇函数,则=______