复数z1=a+4i,z2=-3+bi,若它们的和为实数,差为纯虚数,则实数a,b的值为 ( )
A.a=-3,b=-4 B.a=-3,b=4
C.a=3,b=-4 D.a=3,b=4
以下四个命题既是特称命题又是真命题的是
A.锐角三角形的内角是锐角或钝角 B.至少有一个实数x,使
C.两个无理数的和必是无理数 D.存在一个负数,使
假设关于某设备的使用年限和所支出的维修费用(万元)统计数据如下:
使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若有数据知对呈线性相关关系.求:
(1) 求出线性回归方程的回归系数;
(2) 估计使用10年时,维修费用是多少.
如图是计算1+2+3+4+…+100的值的程序框图,请写出对应的程序.
某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在).
(1)求居民收入在的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在的这段应抽取多少人?
对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)画出茎叶图,由茎叶图你能获得哪些信息?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?