满分5 > 高中数学试题 >

早在两千多年前,我国首部数学专著《九章算术》中,就提出了宛田(扇形面积)的计算方...

早在两千多年前,我国首部数学专著《九章算术》中,就提出了宛田(扇形面积)的计算方法:“以径乘周,四而一.” (直径与弧长乘积的四分之一).已知扇形的弧长为面积为,则实数等于__________

 

【解析】 先利用扇形的面积公式及弧长公式求出半径和圆心角,再利用向量数量的运算求出和,进而可得实数的值. 【解析】 如图 由扇形面积公式可得,得, 所以扇形圆心角,则为等边三角形,则, 又, 所以,即. 故答案为:.
复制答案
考点分析:
相关试题推荐

已知角的顶点在坐标原点,始边在轴非负半轴,终边经过点,且,则 __________

 

查看答案

已知若幂函数的图象关于轴对称,且在区间内单调递减,则__________

 

查看答案

已知的三个顶点是函数图象的交点,如果的周长最小值为等于(   

A. B. C. D.

 

查看答案

,则的大小关系为(   

A. B. C. D.

 

查看答案

已知是奇函数,且当,则不等式的解集是(   

A. B.

C. D.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.