某一个粒子源可以放射出带正电的粒子,设粒子的质量为m、电荷量为q,它进入电势差为U的带窄缝的平行平板电极S1和S2间电场时,其速度为v0,经电场加速后,沿ox方向进入磁感强度为B、方向垂直纸面向外的有界匀强磁场,ox垂直平板电极S2,当粒子从P点离开磁场时,其速度方向与ox方向的夹角,如图所示,整个装置处于真空中。
(1)求粒子在磁场中沿圆弧运动的轨道半径R
(2)求粒子在磁场中运动所用时间t
(1)相对论理论告诉我们。物体以速度运动时的质量m与静止时的质量之间有如下
关系因物体的速度不可能达到光速,所以总有。由质量关系式可
知物体运动时的质量m总要大于静止时的质量.北京正负电子对撞机将正、负两个电子加速使其相向运动,发生对撞.对撞前每个电子对于实验室的速度都是c,在实验室观测,两个电子的总动能是____________(设电子静止质量为m,计算结果中的光速c和电子静质量不必带入数值).
(2)一根竖直悬挂的弹簧,下端挂上2N的物体时,伸长
量为2 cm.一研究小组用它探究弹簧弹力和弹簧伸长的
关系,在弹簧弹性限度内,测出悬挂不同重物时,弹簧
弹力和弹簧伸长量的关系,画出了如图的图像。该图像
以级轴表示弹力F,单位为牛顿,图线为反比例关系的双
曲线,因绘图同学的疏忽,忘记在横轴标出关于弹簧伸长量x的表达形式,请你帮助写
出横轴所表示的弹簧伸长量x的表达形式_________。采用SI单位制,对应纵标为4N
的横坐标的坐标值应为___________.
(3)下圈是用来测量未知电阻R的实验电路的实物连线示意图,圈中R是待测电阻,
阻值约为几k;E是电池组,电动势6V,内阻不计:V是电压表,量程3V,内阻
R是电阻箱,阻值范围0~9999;R是滑动变阻器,和是单刀单掷开关.
主要的实验步骤如下:
a.连好电路后,合上开关S1和S2,调节滑动变阻器的滑片,使得电压表的示数为3.0V。
b.合上开关S1,断开开关S2,保持滑动变阻器的滑片位置不变,调节电阻箱的阻值,使得电压表的示数为1.5V。
c.读出电阻箱的阻值,并计算求得未知电阻Rx的大小。 d.实验后整理仪器。
①根据实物连线示意图,在虚线框内画出实验的电路图,图中标注元件的符号应与实物连接图相符。
②供选择的滑动变阻器有:
滑动变阻器A:最大阻值100,额定电流0.5A
滑动变阻器B:最大阻值20,额定电流1.5A
为了使实验测量值尽可能地准确,实验应选用的滑动变阻器是__________。
③电阻箱的旋钮位置如图所示,它的阻值是_______________。
④未知电阻Rx=____________。(2位有效数字)
⑤测量值与真实值比较,测量值比真实值________。(填“偏大”、“相等”或“偏小”)
如图所示,电源电动势为E,内阻忽略不计,滑动变阻器的滑片P置于中点:两平行极板间有垂直纸面的匀强磁场,一带正电的粒子以速度正好水平向右匀速穿过两板 (不计重力)。以下说法错误的是
A.若粒子带负电,也可以沿图示方向以相同速度沿直线穿过此区域
B.将滑片P向上移动一点,该粒子穿出两板过程中电势能增大
C.将滑片P向上移动一点,该粒子穿出两板过程中动能减小
D.把R调为原来的一半,则能沿直线穿出的粒子速度为
如图所示,ABC和DEF是在同一竖直平面内的两条光滑
轨道,其中ABC的末端水平,DEF是半径为的
半圆形轨道,其直径DF沿竖直方向,C、 D可看作重合。
现有一可视为质点的小球从轨道ABC上距C点高为H的
地方由静止释放,g取10m/s.以下说法正确的是
A.若使小球经C处水平进入轨道DEF且能沿轨道运动,
H至少为0.4m
B.若使小球经C处水平进入轨道DEF且能沿轨道运动,H
至少为0.2m
C.若使小球恰好击中与圆心等高的E点,H应为0.1m
D.若使小球恰好击中与圆心等高的E点,H应为0.05m
如图所示,平面内有一菱形,点为其两对角线的交点。空间存在一未知的静电场,方向与菱形所在平面平行。有一电子,若从点运动至点,电势能就会增加△E;若从点运动至点,电势能就会减E.那么此空闻存在的静电场可能是
A.方向垂直于,并由指向的匀强电场
B.方向垂直于,并由指向的匀强电场
D.位于点的正点电荷形成的电场
D.位于点的负点电荷形成的电场
三段等长的、不可伸长的细线结于点,端固定在水平杆上,端接在套在竖直光滑
杆上的轻圆环上.C端挂一重物,重物的质量为m。开始时轻环固定在紧靠端的位
置,等于绳长的1.6倍,重物静止对如图所示。今不再固定圆环,让圆环可以在
竖直光滑杆上自由滑动,重物再次静止对绳的拉力为,绳的拉力为,则
A.
B.
C.
D.