如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料,不同粗细的导线绕制(Ⅰ为细导线)。两线圈在距磁场上界面高处由静止开始自由下落,再进入磁场,最后落到地面。运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界。设线圈Ⅰ、Ⅱ落地时的速度大小分别为v1、v2,在磁场中运动时产生的热量分别为Q1、Q2。不计空气阻力,则
A.v1 <v2,Q1< Q2 B.v1 =v2,Q1= Q2
C.v1 <v2,Q1>Q2 D.v1 =v2,Q1< Q2
L型木板P(上表面光滑)放在固定斜面上,轻质弹簧一端固定在木板上,另一端与置于木板上表面的滑块Q相连,如图所示。若P、Q一起沿斜面匀速下滑,不计空气阻力。则木板P的受力个数为
A. 3 B.4 C.5 D.6
如图所示,M、N是平行板电容器的两个极板,R0为定值电阻,R1、R2为可调电阻,用绝缘细线将质量为、带正电的小球悬于电容器内部。闭合电键S,小球静止时受到悬线的拉力为F。调节R1、R2,关于F的大小判断正确的是
A.保持R1不变,缓慢增大R2时,F将变大
B.保持R1不变,缓慢增大R2时,F将变小
C.保持R2不变,缓慢增大R1时,F将变大
D.保持R2不变,缓慢增大R1时,F将变小
为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”。假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2。火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G。仅利用以上数据,可以计算出
A.火星的密度和火星表面的重力加速度
B.火星的质量和火星对“萤火一号”的引力
C.火星的半径和“萤火一号”的质量
D.火星表面的重力加速度和火星对“萤火一号”的引力
如图所示,在xOy平面内有一个以O为圆心、半径R=0.1m的圆,P为圆周上的一点,O、P两点连线与轴正方向的夹角为θ。若空间存在沿轴负方向的匀强电场,场强大小E=100V/m,则O、P两点的电势差可表示为
A. B.
C. D.
一列沿x轴方向传播的简谐横波,某时刻的波形如图所示。P为介质中的一个质点,从该时刻开始的一段极短时间内,P的速度和加速度的大小变化情况是
A.变小,变大
B.变小,变小
C.变大,变大
D.变大,变小